

ERBS/ERBE NON-SCANNER MEASUREMENT PRECISION 1984-1999

Robert B. Lee III*a, Kathryn A. Bush**b, Jack Paden**b, Dhirendra K. Pandey**b, Robert S. Wilson**b, and G. Louis Smith***c

^aNASA Langley Research Center, ^bScience Applications International Corp, ^cNational Institute for Aerospace

- EXTEND IN-FLIGHT CALIBRATIONS TO COVER OCTOBER 1999 THRU DECEMBER 2003, ERBE EARTH IRRADIANCE MEASUREMENTS.
- ACCOUNT FOR VARIATIONS IN ERBE EARTH IRRADIANCE MEASUREMENTS DUE TO VARIATIONS IN THE ERBS SPACECRAFT ALTITUDE.

OCTOBER 5, 1999, THE ERBE ELEVATION DRIVE FAILED PREVENTING ON-ORBIT CALIBRATIONS OF THE ERBE ACR'S USING THE BUILT-IN BLACKBODIES, TUNGSTEN LAMP, AND SUN [THRU SPECIAL SOLAR VIEWING PORTS].

- 1984-1999, TOP-OF-THE-ATMOSPHERE (TOA) ERBE
 NONSCANNING ACR MEASUREMENTS CONTAINED AN 1.7 Wm⁻²
 INCREASE, WHICH WAS CAUSED BY THE ERBS SPACECRAFT
 ALTITUDE DECREASING FROM 611 km TO 587 KM.
- 1984-1999, ERBS/ERBE NONSCANNING ACTIVE-CAVITY RADIOMETERS (ACR) MEASURED EARTH IRRADIANCES AT THE 0.3 Wm⁻² ACCURACY LEVEL AT SATELLITE ALTITUDE (SA).
- ANALYSES 2002-2003 SA, 180-DEGREE ERBS SPACECRAFT PITCH MANEUVER SOLAR CALIBRATIONS INDICATE THAT THE 1999 GAINS, ALONG WITH THE CORRESPONDING 2000-2003 ACR OFFSETS CAN BE USED TO REDUCE THE OCT. 1999 THRU DEC. 2002 SA EARTH FLUX MEASUREMENTS AT THE 0.5 Wm⁻² PRECISION LEVEL.

EARTH RADIATION BUDGET SATELLITE (ERBS), LAUNCHED OCTOBER 5, 1984 AND STILL OPERATING.

EARTH RADIATION BUDGET EXPERIMENT (ERBE) NONSCANNING ACTIVE-CAVITY RADIOMETERS (ACR) WERE LAUNCHED ABOARD THE ERBS SPACECRAFT OCT. 1984

THE EARTH RADIATION BUDGET EXPERIMENT (ERBE) ACTIVE-CAVITY RADIOMETERS (ACR) SENSOR DESIGN

FOUR [4] ERBE NONSCANNING ACTIVE CAVITY RADIOMETERS:

(1) TOTAL WIDE FIELD-OF-VIEW [TWFOV]

FOV: 142.8°, ENTIRE EARTH; 1: 0.2 - < 50 MICROMETERS;

(2) SHORTWAVE WIDE FIELD-OF-VIEW [SWFOV]

FOV: 142.8°, **ENTIRE EARTH;** 1 : 0.2 - 5.0 **MICROMETERS**;

(3) TOTAL MEDIUM FIELD-OF-VIEW [TMFOV]

FOV: 88.4° DIAMETER LATITUDAL REGIONS; 1:0.2-<50

MICROMETERS; AND

(4) SHORTWAVE MEDIUM FIELD-OF-VIEW [SMFOV]

FOV: 88.4° DIAMETER LATITUDAL REGIONS ; 1:0.2-5.0 MICROMETERS.

ERBE IRRADIANCE VARIABILITY CAUSED BY ERBS SPACECRAFT ALTITUIDINAL VARIATIONS.

EARTH RADIATION BUDGET SATELLITE (ERBS) SPACECRAFT ALTITUDINAL VARIATIONS

INDICES OF SOLAR MAGNETIC ACTIVITY

* Prompt Photometric Sunspot Index (PPSI) A F10.7-cm Solar Flux × Sunspot Number

365-DAY RUNNING MEANS OF (TWFOV-SWFOV) TOA LONGWAVE EARTH IRRADIANCES FOR NO ALTITUDINAL VARIATION CORRECTIONS AND WITH ALTITUDE VARIABILITY CORRECTIONS

LONGWAVE IRRADIANCE CORRECTIONS FOR ERBS SPACECRAFT ALTITUDINAL VARIATIONS

ELEVATION GEOMETRY FOR INTERNAL CALIBRATIONS [OFFSETS], SOLAR CALIBRATIONS [GAINS], AND NOMINAL EARTH-VIEWING [OFFSETS] MEASUREMENTS

OCTOBER 5, 1999, THE ERBE ELEVATION DRIVE FAILED PREVENTING ON-ORBIT CALIBRATIONS OF THE ERBE ACR'S USING THE BUILT-IN BLACKBODIES, TUNGSTEN LAMP, AND SUN [THRU SPECIAL SOLAR VIEWING PORTS].

365-DAY RUNNING MEANS OF (TWFOV-SWFOV) TOA LONGWAVE EARTH IRRADIANCES FOR NO ALTITUDINAL VARIATION CORRECTIONS AND WITH ALTITUDE VARIABILITY CORRECTIONS

365-DAY RUNNING MEANS OF ERBS/ERBE TWFOV & TMFOV ACR TOTAL SOLAR IRRADIANCE (TSI) MEASUREMENTS COMPARED WITH REFERENCE SOLAR MONITOR TSI VALUES

♦ TMFOV ■ TWFOV • Solar Monitor (SM)

ERBS TOTAL WIDE FIELD-OF-VIEW [TWFOV] NONSCANNER [NS] TOTAL SOLAR IRRADIANCE [TSI] MEASUREMENTS GAIN DRIFT OF SHIFT DETERMINATIONS

- BETWEEN OCT. 1984 AND OCT. 1999, TWFOV TSI VALUES SLOWLY DECREASED APPROXIMATELY 1 Wm⁻² OUT OF 1365 Wm⁻², 0.07% TWFOV GAIN DECREASE.
- TWFOV GAIN DECREASE WAS CAUSED BY DEGRADATION OF ABSORTANCE OF THE BLACK PAINT IN THE PRIMARY CAVITY.
- TMFOV GAIN WAS STABLE AT THE 0.02% LEVEL BETWEEN OCT. 1984 AND OCT. 1999.

365-DAY RUNNING MEANS OF SWFOV AND SWFOV NONSCANNING ACR TOTAL SOLAR IRRADIANCE (TSI) MEASUREMENTS COMPARED WITH REFERENCE SOLAR MONITOR TSI VALUES

ERBS TOTAL WIDE FIELD-OF-VIEW [TWFOV] NONSCANNER [NS] TOTAL SOLAR IRRADIANCE [TSI] MEASUREMENTS GAIN DRIFT OF SHIFT DETERMINATIONS

- BETWEEN OCT. 1984 AND OCT. 1999, TWFOV TSI VALUES SLOWLY DECREASED APPROXIMATELY 1 Wm⁻² OUT OF 1365 Wm⁻², 0.07% TWFOV GAIN DECREASE.
- TWFOV GAIN DECREASE WAS CAUSED BY DEGRADATION OF ABSORTANCE OF THE BLACK PAINT IN THE PRIMARY CAVITY.
- TWFOV AND SHORTWAVE WIDE FIELD-OF-VIEW [SWFOV]
 NONSCANNERS [NS] WERE EXPOSED TO DIRECT UV SOLAR
 IRRADIANCES TWICE EVERY ORBIT. THE DIRECT
 IRRADIANCES CAUSED THE SWFOV NS GAIN TO
 DECREASE APPROXIMATELY 8.8%.

EARTH RADIATION BUDGET EXPERIMENT (ERBE) NONSCANNING ACR'S, SPACECRAFT SOLAR CALIBRATION PITCH MANEUVERS

VALIDATE ERBE ACR GAIN CALIBRATION <u>APPROACH</u>

ERBS SPACECRAFT PITCHED 180 DEGREES FROM EARTH'S NADIR; AND

NONSCANNING ACR MEASURE IRRADIANCES FROM DEEP SPACE TO DETERMINE ACR OFFSETS.

GEOMETRY FOR 180-DEGREE ERBS PITCH MANEUVER: ERBE SENSOR OFFSET DETERMINATIONS

EARTH RADIATION BUDGET EXPERIMENT (ERBE) NONSCANNING ACR'S, SPACECRAFT SOLAR CALIBRATION PITCH MANEUVERS

VALIDATE ERBE ACR GAIN CALIBRATION <u>APPROACH</u>

ERBS SPACECRAFT PITCHED 180 DEGREES FROM EARTH'S NADIR; AND

NONSCANNING ACR MEASURE TOTAL SOLAR IRRADIANCE (TSI), SUN LOCATED WITHIN THE SPACECRAFT ORBITAL PLAN.

GEOMETRY FOR 180-DEGREE ERBS PITCH MANEUVER: ERBE SENSOR RESPONSE/GAIN DETERMINATIONS

EARTH RADIATION BUDGET EXPERIMENT (ERBE) NONSCANNING ACR'S, SPACECRAFT SOLAR CALIBRATION PITCH MANEUVERS

VALIDATE ERBE ACR GAIN CALIBRATION APPROACH

ERBS SPACECRAFT PITCHED 180 DEGREES FROM EARTH'S NADIR; AND

NONSCANNING ACR MEASURE IRRADIANCES FROM DEEP SPACE TO DETERMINE ACR OFFSETS.

GEOMETRY FOR 180-DEGREE ERBS PITCH MANEUVER: ERBE SENSOR OFFSET DETERMINATIONS

EARTH RADIATION BUDGET EXPERIMENT (ERBE) NONSCANNING ACR'S, SPACECRAFT SOLAR CALIBRATION PITCH MANEUVERS

VALIDATE ERBE ACR GAIN CALIBRATION <u>APPROACH</u>

ERBS SPACECRAFT PITCHED 180 DEGREES FROM EARTH'S NADIR; AND

NONSCANNING ACR MEASURE TOTAL SOLAR IRRADIANCE (TSI), SUN LOCATED WITHIN THE SPACECRAFT ORBITAL PLAN.

ERBS SPACECRAFT [S/C] SCHEDULED 180-DEGREE PITCH MANEUVERS

DATE	CALIBRATION OBJECTIVE	VELOCITY VECTOR
NOVEMBER 21, 1984	SENSOR GAINS & OFFSETS	+
OCTOBER 19, 1985	SENSOR GAINS & OFFSETS	_
JULY 23, 2002	SENSOR OFFSETS	+
AUGUST 8, 2002	SENSOR OFFSETS	+
DECEMBER 4, 2002	SENSOR GAIN	-
DECEMBER 10, 2002	SENSOR OFFSETS	+
SEPTEMBER 16 & 17, 2003	SENSOR GAIN & OFFSETS	+

ERBS SPACECRAFT [S/C] ERBE UNSCHEDULED 180-DEGREE PITCH MANEUVERS

NONSCANNER	POWER	EVENT	VELOCITY
OFF	ON		VECTOR
JULY 2, 1987	JULY 3, 1987	LOST S/C ATTITUDE CONTROL DURING YAW MANEUVER	+
JAN. 16, 1999	FEB. 5, 1999	BATTERY CELL FAILURE	+
NOV. 16, 2000	NOV. 17, 2000	LOST S/C ATTITUDE CONTROL	+

GEOMETRY FOR 180-DEGREE ERBS PITCH MANEUVER: ERBE SENSOR RESPONSE/GAIN DETERMINATIONS

ERBS SPACECRAFT [S/C] SCHEDULED 180-DEGREE PITCH MANEUVERS

DATE	CALIBRATION OBJECTIVE	VELOCITY VECTOR
NOVEMBER 21, 1984	GAIN & OFFSET VALIDATIONS	+
OCTOBER 19, 1985	GAIN & OFFSET VALIDATIONS	-
DECEMBER 4, 2002	GAIN DETERMINATIONS	
SEPTEMBER 16, 2003	GAIN DETERMINATIONS	+
SEPTEMBER 17, 2003	OFFSET DETERMINATIONS	+

DETERMINATION OF POST OCT. 6, 1999 ERBS/ERBE NONSCANNER ELEVATION DRIVE ANGLE

TSI VALUES

DATE	TWFOV	SWFOV	TMFOV	SMFOV
	[Wm-2]	[Wm-2]	[Wm-2]	[Wm-2]
11/21/1984	1369.4	1352.0	1372.0	1365.1
10/20/1985	1368.7	1331.0	1371.5	1364.7
12/04/2002	1317.7	1194.3	1318.2	1312.0
09/16/2003	1376.8	1243.6	1373.2	1357.8

INVERSE COSINE ((12/04/2002 TSI)*(DF))/11/21/1984) =

				ELEV. ANGLE	
	TWFOV	SWFOV	TMFOV	SMFOV	
ANGLE, DEGS.	15.8	16.1	16.1	15.0	
*DCF	1.0	1.0879	1.0	1.00502	

^{*} FILTER TRANSMISSION DEGRADATION CORRECTION FACTOR

IMPLIES THAT ELEVATION ANGLE WAS SET BETWEEN 15 & 16.1 DEGREES AFTER OCTOBER 4, 1999 ELEVATION AXIS FAILURE.

SWFOV AND SMFOV NONSCANNER [NS] OFFSET DETERMINATIONS FROM OBSERVATIONS OF THE EARTH NIGHT SIDE

SHORTWAVE ACR'S WERE ROTATED TO THE 0-DEGREE ELEVATION POSITION TO MEASURE EARTH NIGHT SIDE IRRADIANCES IN ORDER TO DETERMINE THE ZERO-IRRADIANCE OFFSETS.

NOTE: IF NIGHT TIME EARTH MEASUREMENTS WERE NOT AVAILABLE, SHORTWAVE ACR OFFSETS WERE DETERMINED FROM MEASUREMENTS OF TUNGSTEN LAMP IRRADIANCE WHILE THE LAMP WAS OFF.

EARTH RADIATION BUDGET EXPERIMENT (ERBE) NONSCANNING ACR, DEEP SPACE CALIBRATION MANEUVERS

SENSOR OFFSETS VALIDATION/DETERMINATION FROM DEEP SPACE OBSERVATIONS

ERBS PITCHED 180 DEGREES FROM EARTH'S NADIR; AND

NONSCANNING ACR MEASURE ZERO-IRRADIANCE OF DEEP COLD SPACE, SUN LOCATED OUTSIDE OF ACR FOV.

GEOMETRY FOR 180-DEGREE ERBS PITCH MANEUVER: ERBE SENSOR OFFSET DETERMINATIONS

GEOMETRY FOR 180-DEGREE ERBS PITCH MANEUVER: ERBE SENSOR OFFSET DETERMINATIONS

TOTAL WIDE FIELD-OF-VIEW [TWFOV] NONSCANNER OFFSETS AT SATELLITE ALTITUDES DEEP SPACE PITCH MANEUVER RESULTS

DATES	CALIBRATION SOURCES			
	BLACKBODY	SPACE D	IFFERENCES	
21-NOV-84	1703.3 Wm -²	1703.7 Wm -2	-0.4 Wm -2	
19-OCT-85	1704.5 Wm -2	1704.2 Wm -2	+0.3 Wm -2	
*2-JULY-87	1705.8 Wm -²	1706.3 Wm -2	-0.5 Wm -2	
*16-JAN-99	1713.5 Wm -²	1714.2 Wm -2	-0.7 Wm -2	
16-NOV-00	NO CAL.	1667.9 Wm -2	N/A	
23-JULY-02	NO CAL.	1669.8 Wm -2	N/A	
8-AUG-02	NO CAL.	1669.7 Wm -2	N/A	
10-DEC-02	NO CAL.	1669.6 Wm -2	N/A	

^{*} DENOTES DATES WHEN ATTITUDE CONTROL OF THE ERBS WAS LOST.

TOTAL MEDIUM FIELD-OF-VIEW [TMFOV] NONSCANNER OFFSETS AT SATELLITE ALTITUDES DEEP SPACE PITCH MANEUVER RESULTS

DATES	CALIBRATION SOURCES					
	BLACKBODY	SPACE	DIFFERENCES			
21-NOV-84	1277.3 Wm -2	1276.9 Wm ⁻²	-0.4 Wm -2			
19-OCT-85	1279.8 Wm -2	1277.5 Wm -2	-2.3 Wm -2			
*2-JULY-87	1276.4 Wm -2	1278.0 Wm -2	+1.6 Wm ⁻²			
*16-JAN-99	1273.8 Wm -2	1273.5 Wm -²	-0.3 Wm -2			
*16-NOV-00	NO CAL.	1254.8 Wm -2	N/A			
23-JULY-02	NO CAL.	1252.6 Wm -2	N/A			
8-AUG-02	NO CAL.	1254.5 Wm -2	N/A			
10-DEC-02	NO CAL.	1253.1 Wm -²	N/A			

^{*} DENOTES DATES WHEN ATTITUDE CONTROL OF THE ERBS WAS LOST.

TOTAL WIDE FIELD-OF-VIEW NONSCANNER OFFSETS AT SATELLITE ALTITUDES

COMPARIONS VALIDATE THAT THE
BLACKBODY MEASUREMENTS YIELDED
SENSOR OFFSETS WITHIN 0.5 Wm-2 OF THOSE
OFFSETS DERIVED FROM REFERENCE, NEAR
ZERO-IRRADIANCE SOURCE FROM 3 DEGS.
KELVINS DEEP SPACE.

SHORTWAVE WIDE FIELD-OF-VIEW [SWFOV] OFFSETS AT SATELLITE ALTITUDES ERBS PITCH MANEUVERS

DATE	NIGHT	SPACE	GAIN	SPACE-	FOVL
			COR.	NIGHT	TEMP
		@NIGHT			
	WATTS PER SQUARE METER				
21-Nov-84	1299.9	1304.8	0.9981	4.9	21.9
19-Oct-85	1324.4	1329.8	1.0193	5.4	22.1
*2-Jul-87	1361.4	1367.1	1.0445	5.7	22.3
*16-Jan-99	1401.6	1412.3	1.0874	10.7	28.4
*16-Nov-00	1405.9	1411.9	1.0880	6.0	22.5
23-July-02	1406.1	1411.6	1.0880	5.4	22.5
8-AUG-02	1406.8	1411.9	1.0879	5.1	23.0
10-DEC-02	1406.1	1411.7	1.0879	5.6	22.6

^{*} DENOTES DATES WHEN ATTITUDE CONTROL OF THE ERBS WAS LOST.

SHORTWAVE WIDE FIELD-OF-VIEW [SWFOV] OFFSETS AT SATELLITE ALTITUDES

- DIFFERENCES BETWEEN SPACE AND NIGHT SENSOR OFFSETS SHOULD BE APROXIMATELY 6 Wm⁻² [A_F TERM TIMES AVERAGED NIGHT OLR].
- NEAR CONSTANT DIFFERENCES BETWEEN THE SPACE & NIGHT SENSOR OFFSETS INDICATE MEASUREMENT PRECISIONS APPROACHING 1 Wm⁻².
- JAN 16, 1999, NIGHT OFFSET WAS APPROXIMATELY
 4 Wm⁻² TOO LOW BECAUSE OF DAYSIDE
 COMTAMINATION DURING A TERMINATION ORBIT.

Comparisons of SMFOV offsets derived from measurements of the earth night side and of cold space at satellite altitudes.

Date	Offset (B _{sw})		Offset (B _{sw}) FOVL		Gain
	Night	Space	Differences	Temperature	Correction
	(Wm ⁻²)	(Wm ⁻²)	(Wm ⁻²)	@Night	Factor
21 November 1984	1011.1	1013.1	2.0	21.9	0.9997
19 October 1985	1019.3	1025.5	6.3	22.1	1.00154
02 July 1987	1036.5	1043.5	7.0	22.3	1.0040
16 January 1999	1019.8	1025.0	5.2	28.4	1.00578
16 November-2000	1019.9	1023.9	4.0	22.5	1.00502
23 July 2002	1007.1	1009.5	2.4	22.8	1.00502
08 August 2002	1017.8	1019.9	2.3	22.7	1.00502
10 December 2002	1014.6	1016.5	1.9	23.2	1.00502

- 1984-1999, TOP-OF-THE-ATMOSPHERE (TOA) ERBE
 NONSCANNING ACR MEASUREMENTS CONTAINED AN 1.7 Wm⁻²
 INCREASE, WHICH WAS CAUSED BY THE ERBS SPACECRAFT
 ALTITUDE DECREASING FROM 611 km TO 587 KM.
- 1984-1999, ERBS/ERBE NONSCANNING ACTIVE-CAVITY RADIOMETERS (ACR) MEASURED EARTH IRRADIANCES AT THE 0.3 Wm⁻² ACCURACY LEVEL AT SATELLITE ALTITUDE (SA).
- ANALYSES 2002-2003 SA, 180-DEGREE ERBS SPACECRAFT PITCH MANEUVER SOLAR CALIBRATIONS INDICATE THAT THE 1999 GAINS, ALONG WITH THE CORRESPONDING 2000-2003 ACR OFFSETS CAN BE USED TO REDUCE THE OCT. 1999 THRU DEC. 2002 SA EARTH FLUX MEASUREMENTS AT THE 0.5 Wm⁻² PRECISION LEVEL.

ERBS FIELD-OF-VIEW (FOV) AND SPATIAL CHARACTERISTICS

RADIOMETER	EARTH FOV		SOLAR PRIMARY FOV APERT.			APERT. DISTANT	SECOND. APERT.	SPECTRAL RANGE
	\mathbf{q}_1	\mathbf{q}_2	\mathbf{q}_{1}	q ₂	r ₁	h	r ₂	1
	Deg.	Deg.	Deg.	Deg	j. cm	cm	cm	μm
TOTAL WFOV	68	71.4	4.10	8.80	0.318	1.270	3.460	0.2-100
SHORTWAVE WFOV	68	71.4	4.10	8.80	0.318	1.270	3.460	0.2-5
TOTAL MFOV	37	44.2	3.30	6.97	7 0.318	2.883	2.489	0.2-100
SHORTWAVE MFOV	37	44.2	3.30	6.97	0.318	2.883	2.489	0.2-5

- h height/distance between the primary and secondary apertures
- r_1 radius of primary aperture
- **r**₂ radius of secondary aperture

q₁ - unencumbered FOV half angle

 $[\]boldsymbol{q}_2$ - zero response half angle beyond which the detector response to the target scene is zero.

ANALYSES OF ERBS WIDE FIELD-OF-VIEW (WFOV) NONSCANNER GAINS USING 1984 AND 1985 SOLAR CALIBRATIONS TOTAL WFOV GAINS

SOLAR PORTS

DEEP SPACE MANEUVERS

NOVEMBER 20, 1984

 $TSI = 1376.5 \text{ Wm}^{-2}$

NOVEMBER 21, 1984

 $TSI = 1369.4 \text{ Wm}^{-2}$: AZ AXIS = 0 DEG.

TSI = 1371.0 Wm⁻²: AZ AXIS = 90 DEGS.

SOLAR PORTS

DEEP SPACE MANEUVERS

OCTOBER 20, 1985

TSI = 1376.7 Wm⁻²

OCTOBER 19, 1985

 $TSI = 1368.7 \text{ Wm}^{-2}$: AZ AXIS = 0 DEG.

TSI = 1368.9 Wm⁻²: AZ AXIS = 90 DEGS.

OCTOBER 16, 1985

 $TSI = 1375.5 \text{ Wm}^{-2}$

TWFOV GAIN CORRECTION FACTOR

RATIO 1376.7/1376.5 = 1.0002

RATIO 1368.8/1370.2 = 0.9990

ANALYSES OF ERBS MEDIUM FIELD-OF-VIEW (MFOV)NONSCANNER GAINS USING 1984 AND 1985 SOLAR CALIBRATIONS TOTAL MFOV GAINS

SOLAR PORTS

DEEP SPACE MANEUVERS

DECEMBER 3, 1984

NOVEMBER 21, 1984

 $TSI = 1361.4 \text{ Wm}^{-2}$

 $TSI = 1372.0 \text{ Wm}^{-2}$: AZ AXIS = 0 DEG.

 $TSI = 1374.3 \text{ Wm}^{-2}$: AZ AXIS = 90 DEGS.

SOLAR PORTS

DEEP SPACE MANEUVERS

OCTOBER 20, 1985

OCTOBER 19. 1985

 $TSI = 1363.6 \text{ Wm}^{-2}$

TSI = 1371.5 Wm⁻²: AZ AXIS = 0 DEG.

TSI = 1372.5 Wm⁻²: AZ AXIS = 90 DEGS.

OCTOBER 16, 1985

 $TSI = 1360.3 \text{ Wm}^{-2}$

TMFOV GAIN CORRECTION FACTOR

RATIO 1363.6/1361.4 = 1.0016

RATIO 1372.0/1373.2 = 0.9991

ANALYSES OF ERBS WIDE FIELD-OF-VIEW (WFOV) NONSCANNER GAINS USING 1984 AND 1985 SOLAR CALIBRATIONS SHORTWAVE WFOV GAINS

SOLAR PORTS

DEEP SPACE MANEUVERS

NOVEMBER 20, 1984

 $TSI = 1357.2 \text{ Wm}^{-2}$

NOVEMBER 21, 1984

 $TSI = 1352.0 \text{ Wm}^{-2}$: AZ AXIS = 0 DEG.

TSI = 1352.8 Wm⁻²: AZ AXIS = 90 DEGS.

SOLAR PORTS

OCTOBER 20, 1985

 $TSI = 1335.4 \text{ Wm}^{-2}$

DEEP SPACE MANEUVERS

OCTOBER 19, 1985

 $TSI = 1331.0 \text{ Wm}^{-2}$: AZ AXIS = 0 DEG.

TSI = 1331.6 Wm⁻²: AZ AXIS = 90 DEGS.

OCTOBER 16, 1985

 $TSI = 1334.4 \text{ Wm}^{-2}$.

SWFOV GAIN CORRECTION FACTOR

RATIO 1335.4/1357.2 = 0.9839

RATIO 1331.3/1352.4 = 0.9844

ANALYSES OF ERBS MEDIUM FIELD-OF-VIEW (WFOV) NONSCANNER GAINS USING 1984 AND 1985 SOLAR CALIBRATIONS SHORTWAVE MFOV GAINS

SOLAR PORTS

DEEP SPACE MANEUVERS

NOVEMBER 20, 1984

NOVEMBER 21, 1984

 $TSI = 1362.2 \text{ Wm}^{-2}$ $TSI = 1365.1 \text{ Wm}^{-2}$: AZ AXIS = 0 DEG.

TSI = 1372.2 Wm⁻²: AZ AXIS = 90 DEGS.

SOLAR PORTS

DEEP SPACE MANEUVERS

OCTOBER 20, 1985

OCTOBER 19, 1985

 $TSI = 1357.2 \text{ Wm}^{-2}$

 $TSI = 1364.7 \text{ Wm}^{-2}$: AZ AXIS = 0 DEG.

 $TSI = 1365.6 \text{ Wm}^{-2}$: AZ AXIS = 90 DEGS.

OCTOBER 16, 1985

 $TSI = 1355.0 \text{ Wm}^{-2}$

SMFOV GAIN CORRECTION FACTOR

RATIO 1357.2/1362.2 = 0.9963 RATIO 1365.2/1368.7 = 0.9975

DATA REDUCTION EQUATIONS FOR SHORTWAVE AND TOTAL NONSCANNING ACR'S GAINS AND OFFSETS

TOTAL ACR IRRADIANCES

$$\mathbf{E}_{\mathsf{TOTAL}} = \mathbf{A}_{\mathsf{v}} \mathbf{V}_{\mathsf{A}}^2 + \mathbf{A}_{\mathsf{F}} \mathbf{T}_{\mathsf{F}} + \mathbf{A}_{\mathsf{r}} \mathbf{V}_{\mathsf{r}}^2 + \mathbf{B}_{\mathsf{TOTAL}}$$

SHORTWAVE ACR IRRADIANCES

$$E_{SW} = A_V V_A^2 + A_F T_F + A_E E_{TOTAL} + A_r V_r^2 + B_{SW}$$

- A_v ACTIVE CAVITY GAIN
- **V**_Δ ACTIVE CAVITY HEATER VOLTAGE
- A_F BAFFLE/FOVL-CAVITY EXCHANGE FACTOR
- T_E BAFFLE/FOVL TEMPERATURE
- A_r REFERENCE CAVITY GAIN
- V_r REFERENCE CAVITY HEATER VOLTAGE
- **B_{TOTAL} TOTAL ACR SENSOR, ZERO-IRRADIANCE OFFSET**
- A_F FILTER DOME LW HEATING FACTOR
- **B**_{SW} SHORTWAVE ACR SENSOR, ZERO-IRRADIANCE OFFSET

ACR SENSOR OFFSETS DETERMINED FROM OBSERVATIONS OF ON-ORBIT BLACKBODIES

ELEVATION GEOMETRY FOR INTERNAL CALIBRATIONS [TOTAL OFFSETS], AND NOMINAL EARTH-VIEWING [SHORTWAVE OFFSETS] MEASUREMENTS

ACR SENSOR OFFSETS DETERMINED FROM OBSERVATIONS OF THE EARTH NIGHT SIDE

GAIN DETERMINATIONS AT SOLAR CALIBRATIONS POSITION

- 1. ACR'S WERE ROTATED TO THE 78 DEGREES
 IN ELEVATION POSITION AT THE SOLAR PORTS
 TO MEASURE TOTAL SOLAR IRRADIANCES.
- 2. INITIAL MEASUREMENTS WERE USED AS REFERENCES TO EVALUATE GAIN CHANGES.
- 3. EACH DAY, THE FLIGHT GAINS WERE EQUATED TO INITIAL FLIGHT GAINS DIVIDED BY GAIN CHANGES.

ERBS TOTAL WIDE FIELD-OF-VIEW [TWFOV] NONSCANNER [NS] TOTAL SOLAR IRRADIANCE [TSI] MEASUREMENTS GAIN DRIFT OF SHIFT DETERMINATIONS

- BETWEEN OCT. 1984 AND OCT. 1999, TWFOV TSI VALUES SLOWLY DECREASED APPROXIMATELY 1 Wm⁻² OUT OF 1365 Wm⁻², 0.07% TWFOV GAIN DECREASE.
- TWFOV GAIN DECREASE WAS CAUSED BY DEGRADATION OF ABSORTANCE OF THE BLACK PAINT IN THE PRIMARY CAVITY.
- TMFOV GAIN WAS STABLE AT THE 0.02% LEVEL BETWEEN OCT. 1984 AND OCT. 1999.

365-DAY RUNNING MEANS OF ERBS/ERBE TWFOV & TWFOV ACR TOTAL SOLAR IRRADIANCE (TSI) MEASUREMENTS COMPARED WITH REFERENCE SOLAR MONITOR TSI VALUES

♦ TIVIFOV ® TWFOV • Solar Monitor (SM)

THE TOTAL NONSCANNING ACR'S PRODUCED IRRADIANCES WITH MEASUREMENT PRECISION LEVELS APPROACHING 0.5 Wm⁻².

THE TOTAL ACR GAINS WERE FOUND TO BE STABLE SYSTEMATICALLY AT LEVELS BETTER THAN 0.05 ± 0.02 % AND THE OFFSETS AT THE .5 Wm⁻² LEVEL.

SHORTWAVE ACR'S GAINS WERE FOUND TO BE CORRECTED AT THE 0.03% PRECISION LEVEL USING MEASUREMENTS OF THE TOTAL SOLAR IRRADIANCE [TSI] NORMALIZED TO THE MEAN SUN-EARTH DISTANCE (1 AU).

ELEVATION GEOMETRY FOR INTERNAL CALIBRATIONS [OFFSETS], SOLAR CALIBRATIONS [GAINS], AND NOMINAL EARTH-VIEWING [OFFSETS] MEASUREMENTS

ON-ORBIT CALIBRATIONS OF THE EARTH RADIATION BUDGET EXPERIMENT (ERBE) ACTIVE-CAVITY RADIOMETERS (ACR) ON THE EARTH RADIATION BUDGET SATELLITE (ERBS): 1984-2002

OCTOBER 5, 1999, THE ERBE ELEVATION DRIVE FAILED PREVENTING ON-ORBIT CALIBRATIONS OF THE ERBE ACR'S USING THE BUILT-IN BLACKBODIES, TUNGSTEN LAMP, AND SUN [THRU SPECIAL SOLAR VIEWING PORTS].

GEOMETRY FOR 180-DEGREE ERBS PITCH MANEUVER: ERBE SENSOR RESPONSE/GAIN DETERMINATIONS

